Convergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints

نویسنده

  • Radek Kucera
چکیده

A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, including the frictional three-dimensional (3D) contact problems of linear elasticity, illustrate the computational performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying a Newton Method to Strictly Convex Separable Network Quadratic Programs

Introduction This paper describes the application of Newton Method for solving strictly convex separable network quadratic programs. The authors provide a brief synopsis of separable network quadratic programming and list the various techniques for solving the same. The main thrust of the paper is succinctly identified by the following: 1. Providing a generic subroutine that can be used by vari...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Regularized Interior Proximal Alternating Direction Method for Separable Convex Optimization Problems

In this article we present a version of the proximal alternating direction method for a convex problem with linear constraints and a separable objective function, in which the standard quadratic regularizing term is replaced with an interior proximal metric for those variables that are required to satisfy some additional convex constraints. Moreover, the proposed method has the advantage that t...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions

We analyze alternating descent algorithms for minimizing the sum of a quadratic function and block separable non-smooth functions. In case the quadratic interactions between the blocks are pairwise, we show that the schemes can be accelerated, leading to improved convergence rates with respect to related accelerated parallel proximal descent. As an application we obtain very fast algorithms for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2008